Python3ではじめるシステムトレード【第2版】 ――環境構築と売買戦略
あらすじ/作品情報
読者待望の第2版!より理解しやすく実践的にパワーアップネットワーク上にあるデータソースから金融経済関連のデータをダウンロードし、そのデータの特徴を理解し、投資・取引戦略を構築する。その際にPythonというプログラミング言語と統計的手法を用いてデータを客観的に分析し、安定した収益を実現する取引戦略を構築する。また、学習に用いたソースコードを公開することで、だれでも卓上で分析結果を再現できるようにする。これらが本書の特徴であり、目的である。データ分析に用いるPythonでの最大の特徴は人びとの思考能力を鍛えるということに尽きる。人まねではない独自の戦略のみが利益を上げる。日足のデータを用いてデータ分析の基礎を統計学を通して学ぶ。トレンドの発生を客観的に理解する力を統計学から得る。そのつぎにあゆみ値を用いたデータ分析と取引戦略の構築方法について理解する。トレンドの発生のメカニズムとリスク管理の重要性を実感するためである。第2版となる本書では、Pythonの特徴がさらに生かされている。特定のソースコードでは初版の20倍近いスピードを達成している。さらに初版で読者から寄せられた質問に説明を加えた。また、意見や勉強会でのやりとりは余すことなく第2版に生かされている。また、マーケットメイクの仕組みを基にした取引戦略のバックテストを2つ追加した。今回新しく追加した第17章でランダムウォークと機械学習について、深層学習、主成分分析、大偏差原理を比較した。特に大偏差原理の議論を明確にするために初版では用いなかったmove1とmove2という表現を本書では導入した。これはトレンドの発生を理解するのに役にたつ。ソースコードはGitHubに公開している。本書で学べること!● Jupyter Notebookの導入からPythonの利用方法● 株価・為替・経済などのデータの入手方法と分析手法● 時系列分析の処理と統計的手法(自己回帰モデル、モンテカルロ手法など)● あゆみ値の本質と価格形成のメカニズム● 高頻度取引の世界におけるマーケットメイクの仕組み詳しくは16ページ「1.2 本書の構成」を参照